
BPF CI
LSF/MM/BPF 2025

Ihor Solodrai



Overview

● Testing GCC BPF
● Testing sched_ext
● Autoscaling kernel builds
● s390x maintenance
● Github Actions maintenance
● How to trigger BPF CI for your change
● /discuss



GCC BPF

lore.kernel.org/bpf: “Announcement: GCC BPF is now being tested on BPF CI”

1. Build kernel
2. Download latest build of GCC snapshot for BPF 

target (built once a week)
3. Build tools/testing/selftests/test_progs-bpf_gcc
4. OK, if build successful

This means that GCC successfully produced .bpf.o 
from selftests BPF programs.

About half of the tests fail, so we don’t run them yet.

https://lore.kernel.org/bpf/mMhcrHuvf5fyjPwMa19kug9DHQH9yYcCJXKfaFMXhfQlKIuColex7zg7G6qpPqlfF74-IqzkhpZSlzsgvgikc-u6oQp27dNzFQAAatRaEuU=@pm.me/


sched_ext

1. Build kernel
2. Build tools/testing/selftests/sched_ext/runner
3. Execute the runner

Not enabled by default yet.

But caught some bugs already!

lore.kernel.org/bpf: “selftests/sched_ext: testing on BPF CI”

https://lore.kernel.org/bpf/3fb44500b87b0f1d8360bc7a1f3ae972d3c5282f@linux.dev/


Autoscaling kernel builds

Before:

x86_64 runners
4 x c5.metal on AWS

“build x86_64 kernel”
“build x86_64 kernel with LLVM”
“build s390x kernel”
“build aarch64 kernel”
“run x86_64 tests”

After:

“run x86_64 tests”

x86_64 runners
4 x c5.metal on AWS

“build x86_64 kernel”
“build x86_64 kernel with LLVM”
“build s390x kernel”
“build aarch64 kernel”

AWS CodeBuild
(autoscaled)



Autoscaling kernel builds

Before: After:

A: build kernel
B: run tests

�: build kernel
A: run tests



s390x runners

- Custom-built s390x runner binaries are now 
used instead of binfmt emulation

- Github does not release s390x build of the 
official Github Actions runner (.NET app) 

- selftests performance degrades on high load 
(this is community cloud VMs)

- Maintenance is only somewhat automated
- s390x was removed from libbpf CI

Q: Is it worth it? Any alternatives?



Maintaining Github Actions code

● bash > yaml
○ Don’t like bash? How about python?

■ bpftrace/.github/include/ci.py (kudos to Daniel Xu)
● env variables > action inputs/outputs
● actions/cache isn’t always a good idea
● use sparse checkouts
● “reusable workflows” in github actions are meh (at least so far)
● writing reusable pieces as “actions” works pretty good

○ beware of sneaky dependencies though

https://github.com/bpftrace/bpftrace/blob/master/.github/include/ci.py


Maintaining Github Actions code

Link: kernel-patches/runner#67

When using public actions and/or docker 

for testing on different architectures, 

remember that it’s not magic: it’s QEMU.

https://github.com/kernel-patches/runner/pull/67#issuecomment-2628388670


How to trigger BPF CI for your change

1. gh repo fork https://github.com/kernel-patches/bpf
2. git clone git@github.com:${GH_USERNAME}/bpf.git
3. git checkout -b your-feature
4. Edit code
5. git commit your-changes
6. git push
7. gh pr create

https://github.com/kernel-patches/bpf


/discuss

● What things are not tested but should be?
○ Newer/older LLVM/gcc releases?
○ LST Kernels?
○ 32-bit architectures?

● Reproducing the failures
○ How often do you do it?
○ How difficult is it usually?

● Upstream merges or other dependencies tend to break CI. What can we do?
● How much do we actually care about CI job speed?

○ Waiting 20 mins vs 25: does it really make a difference?


